Existence of ground state solutions to Dirac equations with vanishing potentials at infinity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

On the Existence of Ground State Solutions to Nonlinear Schrödinger Equations with Multisingular Inverse-square Anisotropic Potentials

v > 0 in R \ {a1, . . . , ak}, where N ≥ 3, k ∈ N, hi ∈ C(S), (a1, a2, . . . , ak) ∈ R , ai 6= aj for i 6= j, and 2 = 2N N−2 is the critical Sobolev exponent. The interest in such a class of equations arises in nonrelativistic molecular physics. Inverse square potentials with anisotropic coupling terms turn out to describe the interaction between electric charges and dipole moments of molecules...

متن کامل

On Proper Oscillatory and Vanishing at Infinity Solutions of Differential Equations with a Deviating Argument

Sufficient conditions are found for the existence of multiparametrical families of proper oscillatory and vanishing-at-infinity solutions of the differential equation u(n)(t) = g ( t, u(τ0(t)), . . . , u(τm−1(t)) ) , where n ≥ 4, m is the integer part of 2 , g : R+ × R m → R is a function satisfying the local Carathéodory conditions, and τi : R+ → R (i = 0, . . . , m− 1) are measurable function...

متن کامل

Existence of a ground state solution for a class of $p$-laplace‎ ‎equations

 According to a class of constrained‎ ‎minimization problems‎, ‎the Schwartz symmetrization process and the‎ ‎compactness lemma of Strauss‎, ‎we prove that there is a‎ ‎nontrivial ground state solution for a class of $p$-Laplace‎ ‎equations without the Ambrosetti-Rabinowitz condition‎.

متن کامل

Solutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations

This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2017

ISSN: 0022-0396

DOI: 10.1016/j.jde.2016.09.034